Three possible situations could occur that would rule out the use of the Second Derivative Test for Local Extrema:
Under any of these conditions, the First Derivative Test would have to be used to determine any local extrema. Another drawback to the Second Derivative Test is that for some functions, the second derivative is difficult or tedious to find. As with the previous situations, revert back to the First Derivative Test to determine any local extrema.
Example 1: Find any local extrema of f(x) = x 4 − 8 x 2 using the Second Derivative Test.
f′(x) = 0 at x = −2, 0, and 2. Because f″(x) = 12 x 2 −16, you find that f″(−2) = 32 > 0, and f has a local minimum at (−2,−16); f″(2) = 32 > 0, and f has local maximum at (0,0); and f″(2) = 32 > 0, and f has a local minimum (2,−16).
Example 2: Find any local extrema of f(x) = sin x + cos x on [0,2Ï€] using the Second Derivative Test.
f′(x) = 0 at x = Ï€/4 and 5Ï€/4. Because f″(x) = −sin x −cos x, you find that and f has a local maximum at . Also, . and f has a local minimum at .